
Effect of Drought Stress on Physiological and Biochemical Traits� Seite 81

141. Jahrgang (2024), Heft 2, S. 81–110

Effect of Drought Stress on Physiological and Biochemical Traits of Quercus 
petraea subsp. iberica Seedlings and Analysis of the Relationship with 

Morphological Traits

Einfluss von Trockenstress auf physiologische und biochemische 
Merkmale von Quercus petraea subsp. iberica Sämlingen und Analyse der 

Beziehung zu morphologischen Merkmalen

Ebru Atar1*, Zafer Yücesan1, Fahrettin Atar1, Ali Ömer Üçler1  

Keywords:	 Water potential, proline, chlorophyll, sessile oak, carbohydrate, 
Turkey

Schlüsselbegriffe:	 Wasserpotential, Prolin, Chlorophyll, Traubeneiche, Kohlen-
hydrate, Türkei

Abstract

Due to climate change, forest tree species are expected to be impacted by drought. 
As drought becomes a worldwide problem, there is a need to investigate the res-
ponses of forest tree species to drought. In this study, the objectives were 

(I) to determine the physiological and biochemical responses of seedlings grown
from seeds obtained from different populations of Quercus petraea subsp. iberica
naturally distributed in Turkey under drought stress, 

(II) to establish the relationships between morphological variations among popula-
tions and the physiological and biochemical responses of seedlings to drought
stress, and

(III) to provide recommendations for the selection of populations with better adapta-
tion to drought for future afforestation activities.
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It was determined that total carotenoid, proline, and total carbohydrate contents 
increased, while predawn xylem water potential, chlorophyll a, chlorophyll b, and 
total chlorophyll amounts decreased in seedlings exposed to drought stress as the 
stress intensity increased. Furthermore, strong relationships were revealed between 
root percentage and Dickson quality index, which are important for seedling qua-
lity classification, and the physiological and biochemical responses of populations 
to drought stress. The populations of Alucra, Koyulhisar, and Mesudiye with water 
potential above -1.0 MPa during the drought stress experiment and experiencing 
more severe summer drought in their natural habitats have apparently exhibited hig-
her drought tolerance compared to other populations.

Zusammenfassung

Aufgrund des Klimawandels wird erwartet, dass Waldbaumarten von Trocken-
heit beeinflusst werden. Da Trockenheit und Dürreperiode weltweit zu einem Pro-
blem werden, besteht die Notwendigkeit, die Reaktionen von Waldbaumarten auf 
Wassermangel zu untersuchen. In dieser Studie waren die Ziele (I), die physiologi-
schen und biochemischen Reaktionen von Sämlingen zu bestimmen, die aus Samen 
unterschiedlicher Populationen von Quercus petraea subsp. iberica stammen, die 
natürlicherweise in der Türkei verbreitet sind und unter Trockenstress aufgewach-
sen sind, (II) Beziehungen zwischen morphologischen Variationen zwischen den 
Populationen und den physiologischen und biochemischen Reaktionen der Säm-
linge auf Trockenstress herzustellen und (III) Empfehlungen für die Auswahl von 
Populationen mit besserer Anpassung an Trockenheit für zukünftige Aufforstungs
aktivitäten bereitzustellen. Es wurde festgestellt, dass der Gesamt-Carotinoid-, Pro-
lin- und Gesamtkohlenhydratgehalt zunahm, während das Xylemwasserpotential vor 
dem Morgengrauen, die Chlorophyll-A- und Chlorophyll-B-Werte sowie die Gesamt-
Chlorophyllmengen bei Sämlingen, die Trockenstress ausgesetzt waren, mit zuneh-
mender Stressintensität abnahmen. Darüber hinaus wurden starke Beziehungen 
zwischen Wurzelprozentsatz und Dickson-Qualitätsindex, die für die Klassifizierung 
der Sämlingsqualität wichtig sind, und den physiologischen und biochemischen 
Reaktionen der Populationen auf Trockenstress aufgezeigt. Die Populationen von 
Alucra, Koyulhisar und Mesudiye, die während des Trockenstressexperiments ein 
Wasserpotenzial über -1,0 MPa aufwiesen und in ihren natürlichen Lebensräumen 
stärkere Sommertrockenheit ausgesetzt waren, zeigten im Vergleich zu anderen 
Populationen eine höhere Toleranz gegenüber Trockenheit und Dürreperioden.
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1 Introduction

The effects of global warming and climate change manifest as drought, decreased 
water resources, increased flooding, reduction of agricultural and forest areas, heat-
waves, etc. (Cook et al. 2015; Turan 2018; Çobanoğlu et al. 2023). Climate change is 
linked to escalating aridity pressure in every forest ecosystem across the globe, with 
a potentially major impact on their role as carbon sinks (Anderegg et al. 2015). 

It is stated that there is a correlation between a species' tolerance to drought in their 
native habitats and the intensity of summer droughts in those regions (Lenoir et al. 
2008; Franklin et al. 2016). The identification of drought-resistant origins and their 
utilization in suitable growing environments are of great importance for future seed 
transfer and breeding programs (Ericsson et al. 1993; Dirik 2000). In nature, water 
stress is prevalent for either long-term or short-term periods depending on the lo-
cal climate. Therefore, most plants possess some degree of adaptation or response 
to enhance growth and survival rates during water stress and subsequent recovery 
(Arve et al. 2011). Even in regions where water scarcity has not significantly affected 
the growth of tree species so far, problems associated with drought stress can be 
encountered in the near future. Therefore, it becomes important to compare the to-
lerances of populations within the same climatic regions in relation to drought stress 
(Atar 2021). This approach will also play a crucial role in establishing the foundation 
for active gene conservation in an uncertain future (Chaves and Oliveira 2004). The-
refore, it is important to identify relatively drought-tolerant origins, as the assurance 
of local origins may not be certain, for determining future afforestation strategies 
(Çalıkoğlu 2002).

The growth and adaptation of forest trees are regulated by genetic structure and en-
vironmental factors, as in other organisms (Kozlowski and Pallardy 1997). It has been 
reported by various researchers that water, either alone or in conjunction with other 
environmental factors, is an important factor determining vegetation distribution on 
Earth (Kozlowski and Pallardy 1997; O'Brien 1998). Due to the significance of water in 
plant development, numerous studies have been conducted on water stress resul-
ting from either water scarcity or water excess (Bayar and Deligöz 2021; Illescas et al. 
2022; Koç et al. 2022; Koç and Nzokou 2023). Water stress can change the metabolic 
and growth patterns in the plant, reduce respiration, photosynthesis and ion absorp-
tion, and in severe situations, culminate in plant mortality (Jaleel et al. 2009).

Plants exposed to stress factors respond with physiological and biochemical reac-
tions to prevent or minimize damage (Scholz et al. 2012). Drought stress, which is 
an important stress factor, triggers many biochemical, physiological, and molecular 
responses in plants (Cotrozzi et al. 2016; Xiong et al. 2022). As a result, plants also de-
velop adaptation mechanisms in response to stress conditions to adapt to changing 
environmental conditions (Ranjan et al. 2022). In the case of drought stress, plants 
close their stomata and reduce carbon dioxide uptake to prevent water loss (Pirasteh‐
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Anosheh et al. 2016). Additionally, plants exposed to prolonged drought stress re-
gulate their carbon assimilation rates by making certain morphological (such as leaf 
orientation) or physiological (such as osmotic potential) adjustments (Wright et al. 
2015). Plants exposed to drought stress regulate their osmotic potentials by accumu-
lating certain organic solutes within their cells to maintain cell turgor. These organic 
solutes, known also as osmolites, accumulate as soluble sugars, such as glucose and 
sucrose, which are soluble carbohydrates (Huang et al. 2000). Additionally, another 
osmolite that can be accumulated under drought stress is proline (Anjum et al. 2011). 
The accumulated proline under stressful conditions provides energy for plant growth 
and survival, aiding the plant in tolerating stress (Sankar et al. 2007). Some studies 
have reported an increase in soluble sugar and proline content as a result of drought 
stress (Deligöz and Bayar 2018; Zolfaghari and Akbarinia 2018). On the other hand, 
it has been stated by many researchers that drought stress has a negative impact on 
photosynthesis as a consequence of both stomata regulation and structural changes 
(Ashraf and Harris 2013; Osakabe et al. 2014). Water stress leads to structural changes 
in chloroplasts that affect photosynthesis (Dubey 1997). Under drought stress, the 
content of photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids) can 
decrease (Pukacki and Kaminska-Rozek 2005; Terzi et al. 2010). Following relief from 
drought stress and exposure to adequate water conditions, the photosynthetic sys-
tems of plants are restored (Nar et al. 2009). These responses in plants against water 
deficiency vary depending on genotype, species, severity and duration of water loss, 
plant age, and developmental stage (Clua et al. 2009).

Oaks (Quercus sp.) are known for their drought tolerance (Johnson et al. 2019). Howe-
ver, the level of drought tolerance may vary among different oak species (Dickson and 
Tomlinson 1996; Popović et al. 2010; Deligöz and Bayar 2017; Bayar 2022). Turkey has 
a important diversity in terms of oak species. Sessile oak (Quercus petraea), which is 
among the oak species with a wide distribution range, is an important species in Tur-
key due to its ability to naturally grow in different ecological conditions, being a tree 
of temperate climates, and its tolerance to low rainfall and drought (Anşin and Özkan 
2006). It is also valued for its adaptability to various growing conditions and the ver-
satility of its wood, which finds applications in many areas. The general distribution of 
Quercus petraea includes Europe, the Balkans, Thrace, and Anatolia. Quercus petraea 
subsp. iberica is naturally distributed in the Marmara region and the entire Black Sea 
region (Öztürk 2013). Numerous studies have been conducted on various aspects of 
seedling development (Chaar et al. 1997; Farque et al. 2001), fertilization (Vernay et 
al. 2018; Durand et al. 2020), seed germination (Kollmann and Schill 1996; Tilki 2010), 
forest management and regeneration (Mölder et al. 2019; Kohler et al. 2020) related 
to the species Quercus petraea. The effects of drought stress on sessile oak have also 
been revealed through various studies (Bruschi 2010; Turcsán et al. 2016; Móricz et al. 
2021; Matoušková et al. 2022; Nyamjav 2022). However, there is currently no study 
available in Turkey that specifically investigates the drought tolerance of Quercus 
petraea subsp. iberica and the variations in response to drought stress among dif-
ferent populations. In this study, the research questions we want to address are the 
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following: (I) determining the physiological and biochemical responses of seedlings 
grown from seeds obtained from different populations of Quercus petraea subsp. ibe-
rica naturally distributed in Turkey under drought stress, (II) establishing the relation-
ships between morphological variations among populations and the physiological 
and biochemical responses of seedlings to drought stress, and (III) providing recom-
mendations for the selection of Quercus petraea subsp. iberica populations with bet-
ter adaptation to drought for future afforestation activities.

2 Materials and Methods

2.1 Plant Material and Growth Conditions

The seeds were collected in September-October 2019 from six different populations 
of Quercus petraea subsp. iberica in the natural distribution areas in the Black Sea Re-
gion, including Trabzon-Merkez, Gümüşhane-Torul, Giresun-Alucra, Sivas-Koyulhisar, 
Ordu-Mesudiye, and Samsun-Vezirköprü (Table 1, Fig. 1). Healthy seeds were mostly 
identified by using the water flotation method, and they were then stored at cold 
temperature of 4°C until the sowing date. The seeds were sown in December 2019 
in polyethylene bags measuring 12×20 cm, which were filled with a mixture of fo-
rest soil, peat, and river sand (2:2:1). The sowing took place in the open field nursery 
conditions of the Research and Application Greenhouse of the Faculty of Forestry at 
Karadeniz Technical University (40°59'N, 39°46'E, altitude 60 m above sea level).

Table 1: Coordinate and altitude information for each population.

Tabelle 1: Koordinaten- und Höheninformationen für jede Population.
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Figure 1: The geographical locations of the populations and the distribution of the groups obtained 
through hierarchical clustering analysis (Caudullo et al. 2017).

Abbildung 1: Die geografischen Standorte der Populationen und die Verteilung der Gruppen, 
ermittelt durch hierarchische Clusteranalyse (Caudullo et al. 2017).

2.2 Experimental Design

The seedlings grown in the open-field nursery conditions were irrigated close to field 
capacity every two or three days from May to August 2020. In July, the seedlings were 
moved to the Research and Application Greenhouse to protect them from possible 
rainfall. Furthermore, during the implementation of the water withholding method to 
induce drought stress in the seedlings, the temperature in the automated greenhou-
se system was kept as stable as possible, and the impact of temperature fluctuations 
in external weather conditions was minimized. In August, the seedlings were divided 
into two groups for the drought stress experiment. In the control group, irrigation 
continued regularly (every three days until field capacity water content was reached), 
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while irrigation was ceased in the stress group to create drought stress. The stress 
group was subjected to water deprivation for 5, 15, 25, 35, 45, and 55 days to create 
drought stress, and measurements were taken during these days. The study was con-
ducted on a total of 1260 seedlings using a randomized complete block design with 6 
populations × 2 treatments [control and drought stress] × 6 measurements × 5 seed-
lings × 3 replications. During the drought stress experiment, a portable meteorolo-
gical station (Davis Vantage Pro-2) was installed inside the greenhouse to determine 
daily air temperature and humidity changes. Throughout the experiment period, the 
average temperature ranged between 23.4°C and 24.5°C, and the average relative 
humidity varied between 78.4% and 82.7%.

2.3 Predawn xylem water potential and soil moisture content

Predawn xylem water potential (PWP) was measured using a pressure chamber de-
vice (PMS Instruments, Corvallis, OR, USA) following conventional methods. Predawn 
measurements were conducted on nine shoot samples (three seedlings × three repli-
cations) excised from the root collar level of each population, from both the control 
and drought stress groups, between 03.30 and 06.00 AM. Soil moisture was measured 
using a soil moisture meter device (TFA Dostmann). The soil moisture meter provides 
values ranging from 1 to 10, with values between 1–3 indicating dry, 4–7 indicating 
moist, and 8–10 indicating wet conditions on the device's scale.

2.4 Photosynthetic pigments

Photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll and carot-
enoid) were determined by Arnon's method (1949). Fresh leaves from the seedlings 
(nine seedlings in each treatment and population), obtained by cutting them from 
the root collar, were cut into small pieces with scissors to achieve a homogeneous 
mixture. Subsequently, the fresh leaf samples weighing 0.1 g were homogenized by 
grinding with 10 ml of 80% acetone solution, and mixed using a vortex for approxi-
mately 5–10 seconds. The absorbance of the supernatant was measured at 450, 645 
and 663 nm wavelengths using a spectrophotometer (T80+UV/VIS spectrophotometer).

2.5 Total soluble carbohydrate and proline content

Total soluble carbohydrate and proline content were measured using all of the leaves 
from nine seedlings in each treatment and population. Leaf samples were dried at 
65˚C for 48 hours. The total soluble carbohydrate content was determined using the 
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phenol-sulfuric acid method according to Dubois et al. (1956). An amount of 0.1 g of 
dried leaf samples was homogenized with 80% ethanol for 24 hours. The supernatant 
was transferred to another test tube and treated with a 5% phenol solution and sul-
furic acid. The total carbohydrate content was calculated by creating a standard curve 
using standard glucose and measuring the absorbance at 490 nm, expressed as mg 
g-1 dry weight. The amount of proline was determined using the acid-ninhydrin met-
hod (Bates et al. 1973). An amount of 0.1 g of dried samples was homogenized with 
10 ml of 3% sulfosalicylic acid. Then, 2 ml of the supernatant was taken and 2 ml of 
acid-ninhydrin and 2 ml of glacial acetic acid were added to it. The prepared samples 
were kept in a water bath at 100˚C for 1 hour and the reaction was stopped in an ice 
bath. Toluene was added to the cooled samples and mixed in a vortex mixer for 15 
seconds, making them ready for measurement. The absorbance value of each sample 
was measured at 520 nm, and the proline content was calculated using a calibration 
curve, expressed as µmol g-1 dry weight.

2.6 Morphological parameters

Morphological measurements were conducted in October 2020 using 30 randomly 
selected seedlings from each population. On one-year-old seedlings, the following 
morphological measurements were taken: seedling length (SL), root collar diameter 
(RCD), shoot fresh weight (SFW), shoot dry weight (SDW), root fresh weight (RFW), 
root dry weight (RDW), root percentage (RP), and Dickson quality index (DQI). The 
seedling height was measured using a meter with a measurement accuracy of ±1 
mm, and the root collar diameter was measured using a digital caliper with a measu-
rement accuracy of ±0.01 mm. Fresh shoot and root weights were measured using a 
precision scale with an accuracy of ±0.001 g, and then they were dried at 105°C for 24 
hours. Shoot and root dry weights were also measured using a precision scale with 
an accuracy of ±0.001 g. The root percentage expresses the ratio of root dry weight to 
the total dry weight of the seedling [RP = RDW / (SDW + RDW)]. The Dickson Quality 
Index was calculated using the equation DQI = (SDW + RDW) / [(SL / RCD) + (SDW / 
RDW)].

2.7 Climate data and bioclimatic classification for populations

Long-term climate data (1976–2000) and bioclimatic characteristics according to the 
Emberger bioclimatic classification for populations selected from different growing 
conditions are provided in Table 2. The climate data was obtained from the WorldClim 
database (Fick and Hijmans 2017).
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Table 2: Long-term climate data and bioclimatic types of Q. petraea subsp. iberica populations.

Tabelle 2: Langzeitklimadaten und bioklimatische Arten von Q. petraea subsp. iberica Populationen.

According to the Emberger bioclimatic classification (Akman 2011), the precipitation-
temperature coefficient (Q) was applied to determine the Mediterranean bioclimatic 
zones, and the following formula was used. One of the most important factors in 
determining the Mediterranean climate is the identification of summer drought in-
dex (S). Emberger developed the following formula (Eq. 1) to determine the drought 
period.

The smaller the precipitation-temperature coefficient (Q), the drier the climate, and 
the larger it is, the more humid the climate is. Classifications based on Q values are as 
follows: Q < 20: Very arid Mediterranean, 20 ≤ Q ≤ 32: Arid Mediterranean, 32 < Q ≤ 63: 
Semi-arid Mediterranean, 63 < Q < 98: Little-Rainfall Mediterranean, Q = 98: Rainfall 
Mediterranean. 

As the summer drought index (S) decreases, the severity of summer drought increa-
ses, and as the summer drought index increases, the severity of summer drought de-
creases. Classifications based on S values are as follows: S < 5: Mediterranean S = 5–7: 
Sub-Mediterranean S > 7: Not Mediterranean.

2.8 Statistical analysis

The data were analyzed using the “Windows SPSS Software 26.0” and “R v.4.1.3” sta-
tistical package programs. Variance analysis was applied to determine the statistical 
significance (p<0.05) of the differences in morphological, physiological, and bioche-
mical characteristics among populations. Independent samples T-test was used to 
determine the statistical significance (p<0.05) of differences between drought stress 
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treatments for each measurement day. Correlation analysis was performed to reve-
al the linear relationships between the measured morphological, physiological and 
biochemical characteristics. The results of the morphological, physiological, and bio-
chemical characteristics were evaluated together with the long-term climate data of 
the populations, and the groupings formed among the populations were determi-
ned using hierarchical clustering analysis. The statistical significance of the grouping 
obtained by clustering analysis was tested using discriminant analysis.

3 Results

Statistically significant differences (p<0.01) were determined among the measure-
ment time, drought stress application and populations for all measured physiological 
and biochemical parameters. Furthermore, significant differences at a 99% confiden-
ce level were determined among each measured parameter depending on the inter-
actions of time × stress, time × population, stress × population, and time × stress × 
population (Table 3).

Table 3: Results of the variance analysis for the measured parameters.

Tabelle 3: Ergebnisse der Varianzanalyse für die gemessenen Parameter.

3.1 Drought stress impacts on predawn xylem water potential and soil 
moisture content

Predawn xylem water potential values were found to vary depending on drought 
stress application and populations. The average PWP values of the populations in-
cluded in the control group did not show much difference depending on the measu-
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rement time. In the control group, the average PWP value was measured highest at 
-0.15 MPa (Vezirköprü population, measurement on the 15th day) and lowest at -0.42 
MPa (Koyulhisar population, measurement on the 55th day). In the drought group, 
the highest average PWP value was determined as -0.22 MPa (Torul population, mea-
surement on the 5th day), and the lowest average PWP value was -2.13 MPa (Trabzon 
population, measurement on the 55th day). In Trabzon, Torul, and Vezirköprü popula-
tions, it was determined that starting from the 45th day of the drought stress experi-
ment, the average PWP dropped below -1.00 MPa, and yellowing and drying began 
on the leaves of some seedlings. 55th day, PWP values dropped below -2.00 MPa, and 
most of the seedlings dried out. The average PWP values of the Alucra, Koyulhisar, 
and Mesudiye populations did not drop below -1.10 MPa even on the 55th day of 
drought stress, indicating that their drought tolerance is higher compared to other 
populations.

 
 
 
Figure 2: PWP values and t-test results (*p<0.05, **p<0.01) for measurement days and populations.

Abbildung 2: PWP-Werte und t-Test-Ergebnisse (*p<0.05, **p<0.01) für Messtage und Populationen.

Until the 15th measurement day, the PWP values were close to each other in the con-
trol and drought groups. However, the PWP values decreased as the water deficiency 
increased, starting on the 25th measurement day in the drought group. As seen in 
Fig. 3, soil moisture levels in the control group were generally close to each other as a 
result of regular irrigation, while soil moisture levels in the drought group decreased 
constantly due to increased drought stress. As a result of the independent samples t-
test, statistically significant differences at a 99% confidence level were found on each 
measurement day except for the 5th measurement day.
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Figure 3: Change of soil moisture depending on measurement days and treatments. Asterisks show 
significant differences by independent sample t-test (*p< 0.05, **p< 0.01) between treatments.

Abbildung 3: Veränderung der Bodenfeuchtigkeit in Abhängigkeit von Messtagen und Behandlungen. 
Sternchen zeigen signifikante Unterschiede zwischen den Behandlungen anhand des unabhängigen 
Stichproben-T-Tests (*p<0.05, **p<0.01).

3.2 Drought stress impacts on photosynthetic pigments

The amounts of chlorophyll a, chlorophyll b and total chlorophyll generally showed 
fluctuating course depending on the measurement times in the control group. Howe-
ver, the chlorophyll levels in the drought group were lower compared to the control 
group starting on the 25th measurement day. According to the independent samples 
t-test results, statistically significant differences (p<0.05) were found between the re-
sults obtained on the 35th and 55th measurement days of the control and drought 
groups. The total carotenoid amounts of the drought group had higher values com-
pared to the control group starting on the 15th measurement day. However, no sta-
tistically significant differences (p>0.05) were found between the results obtained 
from the control and drought groups on each measurement day (Fig. 4).
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Figure 4: Change of chlorophyll a, chlorophyll b, total chlorophyll and total carotenoid amounts depending 
on measurement days and treatments. Asterisks show significant differences by independent sample t-test 
(*p< 0.05, **p< 0.01) between treatments.

Abbildung 4: Veränderung der Mengen an Chlorophyll a, Chlorophyll b, Gesamtchlorophyll 
und Gesamt Karotinoide in Abhängigkeit von Messtagen und Behandlungen. Sternchen zeigen 
signifikante Unterschiede zwischen den Behandlungen anhand des unabhängigen Stichproben-T-
Tests (*p<0.05, **p<0.01).

In the control group, the minimum TChl was determined to be 2.60 mg g-1 (on the 15th 
measurement day in the Torul population), and the maximum TChl was 4.81 mg g-1 
(on the 35th measurement day in the Vezirköprü population). In the drought group, 
the minimum TChl was 1.92 mg g-1 (on the 55th measurement day in the Trabzon 
population), and the maximum TChl was 4.54 mg g-1 (on the 45th measurement day 
in the Koyulhisar population). As the measurement days increased in the Trabzon, 
Torul, Mesudiye, and Vezirköprü populations, the total chlorophyll amounts of the 
seedlings belonging to the drought group generally remained lower compared to 
the control group. However, in the Alucra and Koyulhisar populations, it was obser-
ved that the total chlorophyll levels varied depending on the measurement days for 
both the control and drought groups (Fig. 5).
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Figure 5: Change of total chlorophyll amounts in each population depending on measurement days and 
treatments. Asterisks show significant differences by independent sample t-test (*p< 0.05, **p< 0.01) 
between treatments.

Abbildung 5: Veränderung der gesamten Chlorophyllmengen in jeder Population in Abhängigkeit 
von Messtagen und Behandlungen. Sternchen zeigen signifikante Unterschiede zwischen den 
Behandlungen anhand des unabhängigen Stichproben-T-Tests (*p<0.05, **p<0.01).

3.3 Drought stress impacts on total soluble carbohydrate and proline content

In the control group, the total soluble carbohydrate and proline contents showed 
a close and gradually increasing trend depending on the measurement days. The 
drought group generally had close values to the control group until the 25th measu-
rement day, but the total soluble carbohydrate and proline contents of the seedlings 
in the drought group increased from the 35th day with increasing drought stress (Fig. 
6).
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Figure 6: Change of total soluble carbohydrate and proline contents depending on measurement days 
and treatments. Asterisks show significant differences by independent sample t-test (*p< 0.05, **p< 0.01) 
between treatments.

Abbildung 6: Veränderung des Gesamtgehalts an löslichen Kohlenhydraten und Prolingehalt in 
Abhängigkeit von Messtagen und Behandlungen. Sternchen zeigen signifikante Unterschiede 
zwischen den Behandlungen anhand des unabhängigen Stichproben-T-Tests (*p<0.05, **p<0.01).

The TSCC of the populations in the drought group showed significant changes 
throughout the duration of drought stress. In the drought group, the TSCC was the 
lowest at 43.15 mg g-1 (on the 15th measurement day in the Torul population) and the 
highest at 122.31 mg g-1 (on the 55th measurement day in the Trabzon population). 
Until the 35th measurement day, the TSCC of the seedlings in the Trabzon, Torul, Alu-
cra and Vezirköprü populations were close to each other in the control and drought 
groups. However, from the 35th day onward, the TSCC of the seedlings in the drought 
group increased due to the effect of drought stress. In both Koyulhisar and Mesudiye 
populations, the TSCC of the drought and control groups exhibited variation throug-
hout the drought stress application, and on the 55th measurement day, the TSCC 
of the seedlings in the drought group was higher compared to the seedlings in the 
control group (Fig. 7). Except for the Mesudiye population, in other populations, as 
the duration of drought stress application increased, the seedlings in the drought 
group had higher proline contents compared to the seedlings in the control group. 
The seedlings exposed to drought stress accumulated proline as the stress increased 
(Fig. 8).
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Figure 7: Change of total soluble carbohydrate content in each population depending on measurement 
days and treatments. Asterisks show significant differences by independent sample t-test (*p< 0.05, **p< 
0.01) between treatments.

Abbildung 7: Veränderung des Gesamtgehalts an löslichen Kohlenhydraten in jeder Population 
in Abhängigkeit von Messtagen und Behandlungen. Sternchen zeigen signifikante Unterschiede 
zwischen den Behandlungen anhand des unabhängigen Stichproben-T-Tests (*p<0.05, **p<0.01).

 
 
Figure 8: Change of proline content in each population depending on measurement days and treatments. 
Asterisks show significant differences by independent sample t-test (*p< 0.05, **p< 0.01) between 
treatments.

Abbildung 8: Veränderung des Prolingehalts in jeder Population in Abhängigkeit von Messtagen und 
Behandlungen. Sternchen zeigen signifikante Unterschiede zwischen den Behandlungen anhand 
des unabhängigen Stichproben-T-Tests (*p<0.05, **p<0.01).
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3.4 Drought stress impacts on morphological parameters

In order to reveal the relationship between the responses of seedlings from different 
populations to drought stress and their morphological characteristics, some mor-
phological characteristics of the seedlings were determined. Based on the results of 
the analysis of variance, there was a statistically significant difference among popu-
lations at the 99% confidence level in terms of SL, SFW, SDW, RP, and DQI values. In 
terms of RCD and RDW values, there was a statistically significant difference among 
populations at the 95% confidence level. However, there was no statistically signifi-
cant difference among populations in terms of RFW value (Table 4).

Table 4: Mean values and analysis of variance results for morphological characteristics of populations.

Tabelle 4: Mittelwerte und Varianzanalyseergebnisse für morphologische Merkmale von Populationen.

The significance of the groups formed among populations through hierarchical 
cluster analysis was tested using discriminant analysis, and the separation into two 
groups was found to be statistically significant. According to Emberger's precipita-
tion-temperature coefficient (Q), the populations of Alucra, Mesudiye, Koyulhisar, Ve-
zirköprü, and Torul, located in the low-rainfall Mediterranean Bioclimatic type, form 
the first group, while the population of Trabzon, located in the rainfall Mediterranean 
Bioclimatic type, forms the second group (Fig. 9). Although the discriminant analysis 
determined that the separation into two groups was statistically significant, the other 
potential groups that could be formed are shown in Fig. 1 and 9. Based on S and Q 
values (Table 2), the populations of Alucra, Mesudiye, and Koyulhisar, which have low 
values, were in the first group. The population of Vezirköprü formed another group. 
The populations of Torul and Trabzon, which have higher S and Q values compared 
to the other populations, were also in separate groups on their own. Indeed, it can 
be observed from the clustering that the climatic characteristics of populations and 
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consequently their adaptation to their habitats have a significant influence on the 
morphological characteristics as well as the physiological and biochemical responses 
to drought stress.

 
Figure 9: Dendrogram of population groups related to hierarchical cluster analysis, and correlation 
analysis result of measured morphological, physiological and biochemical parameters.

Abbildung 9: Dendrogramm der Bevölkerungsgruppen im Zusammenhang mit der hierarchischen 
Clusteranalyse und Korrelationsanalyseergebnis der gemessenen morphologischen, physiologischen 
und biochemischen Parameter.

According to the correlation analysis, it was determined that the PWP value has a 
positive correlation with Chla, Chlb, and TChl, while it has a negative correlation with 
TSCC and proline. Furthermore, the PWP value is strongly positively correlated with 
the RP and DQI of the seedlings, while it has a negative relationship with SL, SFW and 
SDW. It has been revealed that many measured parameters exhibit strong correlati-
ons, both negative and positive, with each other (Fig. 9). Indeed, the correlation ana-
lysis has showed that there are strong relationships between the physiological and 
biochemical responses of the seedlings to drought stress and their morphological 
characteristics.

Statistically significant relationships were found, both negative and positive, bet-
ween climate data and the measured characteristics. The S and Q values, used in Em-
berger's climate classification, were positively correlated with TCr, TSCC, SL, SFW and 
SDW and negatively correlated with PWP, Chla, Chlb, TChl, RP and DQI (Table 5). Po-
pulations with low summer drought indexes (S) and rainfall-temperature coefficients 
(Q) had higher PWP values because they lost less water during drought stress due to 
their adaptation to the growing environments.
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Table 5: Correlation analysis result of climate data and measured parameters.

Tabelle 5: Ergebnis der Korrelationsanalyse von Klimadaten und gemessenen Parametern.

4 Discussion

4.1 Drought stress impacts on physiological and biochemical characteristics

Plants reach their highest water potential values during the predawn (Cleary and Za-
err 1984). In many studies, it is indicated that the optimal PWP for plant growth is bet-
ween -0.5 and -1.2 MPa, and when the PWP drops below -1.2 MPa, the plant requires 
irrigation. (McDonald 1984; Lopushinsky 1990). In the present study, at the beginning 
of the drought stress experiment, the highest average PWP was obtained as -0.22 
MPa in the Torul population, while on the 55th day of the drought stress experiment, 
the lowest average PWP was determined as -2.13 MPa in the Trabzon population. De-
ligöz and Bayar (2017) found in their study on Q. cerris that the xylem water potential, 
which was -0.84 MPa at the beginning of the drought stress experiment, decreased 
to -1.73 MPa on the 30th day of the experiment in stressed seedlings. Also, in the 
control seedlings, the plant water potentials ranged from -0.56 MPa to -1.01 MPa. 
Thomas and Gausling (2000) stated that under moderate drought stress, Q. petraea 
and Q. robur seedlings had significantly lower predawn leaf water potentials compa-
red to control seedlings. In a study conducted on Q. variabilis, it was reported that 
leaf water potential values decreased as drought stress increased (Wu et al. 2013). 
As a result of drought stress applied to Q. cerris and Q. robur seedlings, the lowest 
predawn xylem water potential was determined as -2.28 MPa for Q. cerris and -3.37 
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MPa for Q. robur (Deligöz and Bayar 2018). Consistent with previous research results, 
our study also revealed a significant decrease in xylem water potentials during the 
duration of drought stress.

Plant water potential values can vary depending on environmental conditions and 
plant species. Indeed, significant differences were observed among populations in 
terms of PWP values in the present study. In a study performed on seedlings belon-
ging to 7 different origins representing different bioclimatic zones of Pinus brutia, it 
was determined that origins experiencing strong summer drought in their natural 
distribution areas had the lowest osmotic potential values and were the most re-
sistant to drought effects (Dirik 2000). A seedling could survive at a predawn water 
potential of -2.0 MPa, but typical stomatal activities may be inhibited during the day, 
photosynthesis may progressively decline, and seedling development may cease 
(Lopushinsky 1990). In the present study, it has been determined that in particular 
populations of Trabzon, Torul, and Vezirköprü, the average PWP dropped below -1.0 
MPa from the 45th day of the drought stress experiment. Some seedlings started sho-
wing yellowing and wilting symptoms. The PWP had dropped below -2.0 MPa by the 
55th day, and many seedlings experienced severe wilting. On the other hand, in the 
populations of Alucra, Koyulhisar, and Mesudiye, it was observed that the average 
PWP remained above -1.0 MPa even on the 55th day of the drought stress, indicating 
their high drought tolerance. 

Changes in light intensity and the amount of water in the soil significantly affect 
the synthesis of pigments (Matysiak 2001). This is because chlorophyll pigments are 
highly sensitive to various environmental factors (Lepeduš et al. 2003). It is known 
that carotenoids protect the photosynthetic membranes from damage caused by 
light and play a role in capturing photosynthetic light (Havaux 1998). In this study, it 
was found that from the 25th measurement day onwards, the drought group exhi-
bited lower amounts of chlorophyll a, chlorophyll b, and total chlorophyll compared 
to the control group, while the total carotenoid amounts were higher. Additional-
ly, positive correlations were observed between the PWP and chlorophyll amounts, 
whereas a negative correlation was found with total carotenoid. Similarly, Baquedano 
and Castillo (2007) reported a significant reduction in chlorophyll amounts in oak 
species due to the impact of drought stress. Mafakheri et al. (2010) pointed out that 
drought stress applied during plant growth significantly reduced the amounts of 
chlorophyll a, chlorophyll b, and total chlorophyll.

One of the responses of plants to drought stress is the alteration of carbohydrates in 
stressed plants (Vassey and Sharkey 1989). In response to drought conditions, carbo-
hydrate accumulation increases in different parts of the plant (Krasenky and Jonak 
2012). In the present study, the Trabzon, Torul, and Vezirköprü populations, which 
were significantly affected by water insufficiency and whose PWP values approached 
and fell below -2.0 MPa by the 55th measurement day, had higher carbohydrate accu-
mulation compared to other populations. Similar to the results of the study, Deligöz 
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and Bayar (2017) emphasized that starting from the 7th day of the drought experi-
ment in Q. cerris, the total soluble carbohydrate content in drought-stressed seed-
lings was found to be significantly higher compared to the control seedlings. In stu-
dies conducted on Q. pubescens (Holland et al. 2016) and Q. variabilis (Wu et al. 2013) 
seedlings, it was found that the total soluble carbohydrate content increased with 
the increase in drought stress level. Many studies have also reported carbohydrate 
accumulation in plants under drought stress conditions (Morales et al. 2013; Maguire 
and Kobe 2015; Deligöz and Bayar 2018).

One of the most important responses of plants to drought stress is the accumulation 
of protective solutes such as proline (Yavaş et al. 2016). Many plants accumulate proli-
ne as a response to osmotic stress (Bhaskara et al. 2015). The concentration of proline 
increases with a decrease in water potential or an increase in plant water stress (Lan-
sac et al. 1994). In the present study, it was determined that the proline amount of the 
seedlings in the drought group was higher than the seedlings in the control group 
due to the increase in drought stress in other populations except the Mesudiye popu-
lation. It is believed that the lower accumulation of proline in the drought group of 
the Mesudiye population, compared to the control group, is due to the prioritization 
of carbohydrate accumulation rather than proline accumulation by the seedlings un-
der drought stress to maintain osmotic balance. Indeed, when examining the results 
of carbohydrate analysis, it can be seen that the Mesudiye population had the hig-
hest carbohydrate accumulation among the populations with a value of 117.92 mg 
g-1 on the 45th measurement day. Cotrozzi et al. (2016) reported that drought stress 
caused an increase in proline amounts in Q. ilex, Q. pubescens, and Q. cerris species. 
Deligöz and Bayar (2018) stated that drought stress induced an increase in proline 
and carbohydrate contents in Q. cerris and Q. robur, and Q. robur had more proline 
accumulation than Q. cerris. Wu et al. (2013) indicated that drought stress increased 
proline amounts in Q. variabilis seedlings. Numerous studies have also observed an 
increase in proline amounts with the increase in drought stress (Sircelj et al. 2005; 
Shvaleva et al. 2006; Yang et al. 2007). 

4.2 Drought stress impacts on morphological characteristics

It is seen that many of the studies conducted until recent years for determining seed-
ling quality were based on morphological parameters (Apholo and Rikala 2003; Atar 
2021; Güney et al. 2023). In a study conducted by Semerci (2002), a positive correla-
tion was found between seedling length and survival success. However, some resear-
chers have reported a negative correlation between these two parameters (Larsen 
et al. 1986; Tuttle et al. 1987). Furthermore, it is stated that the root collar diameter 
is a more important criterion in seedling quality classification compared to seedling 
length (Yahyaoğlu and Genç 2007). The root percentage is another important para-
meter used to determine seedling quality (Ayan et al. 2020; Güney et al. 2020). High 
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root development potential is associated with a high survival rate in the field (Ritchie 
1984). Among the populations, the highest mean RP (81.21%) was determined in 
the Koyulhisar population, which is one of the populations least affected by drought 
stress, and the lowest mean RP (63.40%) was determined in the Trabzon population, 
which was most affected by drought stress. Bruschi (2010) stated that there are signi-
ficant differences in morphological characteristics in Q. petraea seedlings exposed to 
drought stress, both in terms of population and irrigation regime. The Dickson quality 
index is an important indicator in determining seedling planting success and survival 
rate (Bayala et al. 2009). According to Dickson et al. (1960), seedlings with a quality 
index close to or above 1 are considered to be of higher quality. In this study, the hig-
hest mean DQI was obtained in the Koyulhisar population with a value of 1.41, while 
the lowest mean DQI was found in the Trabzon population with a value of 0.68. The 
populations with the highest DQI values, namely Koyulhisar, Alucra, and Mesudiye, 
were determined to be the most drought-tolerant populations based on their res-
ponses to drought stress. In addition, it was determined that there was a strong posi-
tive correlation between PWP and RP and DQI values of the seedlings by correlation 
analysis. Indeed, Ritchie and Shula (1984) emphasized that evaluating the physiolo-
gical characteristics of seedling material is crucial, regardless of how good they are in 
terms of genetic and morphological features, as accurate results cannot be obtained 
otherwise. Furthermore, they reported that the results would be more accurate when 
the morphological data used for seedlings aligned with physiological data.

5 Conclusions

In order to make afforestation efforts successful in arid and semi-arid areas, knowing 
the phenotypic characteristics of existing forest trees in nature may not always be 
sufficient. Therefore, it is important to determine the geographic variations of species 
and assess the morphological and physiological characteristics of seeds and seed-
lings obtained from these areas. The populations of Alucra, Koyulhisar, and Mesudiye, 
which have PWP above -1.0 MPa during the drought stress experiment and experien-
ce more severe summer drought in their natural habitats (with lower S and Q values), 
have exhibited higher drought tolerance compared to other populations. It can be 
concluded that these populations can be used in afforestation efforts in water-defi-
cient arid and semi-arid regions.

The increase in the total soluble carbohydrate content of the populations of Q. pe-
traea subsp. iberica under stress conditions can be expressed as an adaptation de-
veloped in response to adverse conditions. The increase in both proline and total 
soluble carbohydrate content serves as important criteria indicating drought tole-
rance in Q. petraea subsp. iberica. Moreover, the increase in carotenoid amounts can 
be considered a good adaptation criterion for drought tolerance, as it helps prevent 
membrane damage associated with water deficiency and contributes to the conti-
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nuity of photosynthesis by assisting chlorophyll pigments.

In the study, it has been revealed that there are strong and significant relation-
ships between the data obtained from the root percentage and Dickson quality in-
dex, which are important parameters in the seedling quality classification, and the 
drought stress resistance of the populations. Thus, it can be said that morphological 
parameters such as RP and DQI, which are simpler to measure than physiological and 
biochemical parameters, can be used in determining the drought tolerance of diffe-
rent populations. Additionally, the bioclimatic classification created using the sum-
mer drought index (S) and precipitation-temperature coefficient (Q) can be utilized as 
an indicator in the selection of populations that may exhibit drought tolerance. Also, 
it is crucial to integrate knowledge about intraspecific ecological amplitude and ad-
aptation processes. However, there might still be biases and difficulties in unraveling 
the correlation between the environment and genetics.

The fact that there are statistically significant differences in terms of drought stress 
among the studied populations necessitates a more detailed study by considering all 
distribution areas of Q. petraea subsp. iberica in Turkey. In this context, future studies 
to establish in situ and ex-situ protection strategies for the species and the determi-
nation of origins that are highly adaptable to changes that may occur in the horizon-
tal and vertical distribution areas of the species, especially at the point of adaptation 
to climate change, will reveal extremely important results for forestry strategies.
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